
C++ Programming Exercises

Summary

Try to work through the exercises on each lesson before moving onto the next. You may find the
following web resource helpful:

• http://www.cplusplus.com

Provides tutorials, a user’s forum and documentation on the most widely used libraries including
strings, I/O and the STL.

Lesson 1 - Hello World

1. Find out what is the difference between a “signed” and an “unsigned” integer. When might you
use an unsigned integer instead of a signed integer?

2. You have seen the “fundamental data type” called int but you will eventually need to use others.
Amend the program to create a char data type, a bool data type and a double data type. Give
them appropriate names and values and print their values to screen using cout.

3. Amend the code so that it asks for two numbers from the user. Store these numbers in separate
integer variables and then print to screen their sum and product on separate lines. Use cin and
cout—as well as the new line charactor—to accomplish this task.

4. Amend the code from Lesson 1 so that the program asks for your first name and then prints
“Hello (your name)!” to the screen. Use the cin and cout classes to accomplish this. In
addition, use the string variable type in the std namespace to store your name.

Lesson 2 - Functions

1. Not every function we may write has to return a value. Write a function called product which
accepts two integers as arguments (like add and minus) but returns no value. In the function
body the product function should use cout to print the product directly to screen.

2. Write a function called quotient which should take a double argument and an integer argument.
This function should also return a double data type. Now if you provide the quotient function
with the values 5 and 3 say, it should return the value 1.66667 or there-abouts. Test this by
calling the function within a cout statement. Once this works change the double argument to
an integer and notice the result; why does quotient no longer return a double?

3. Write a “calculator program” which asks for two numbers and a mathematical operator (repre-
sented as a char type. Depending on the operator (+, -, * or /) call the appropriate function
and display the result. Use a switch statement to filter the choices.

Lesson 3 - Program Flow

1. Write a function that accepts an integer argument and returns a boolean value. The function
should return true if the integer argument is greater than or equal to zero, and false otherwise.
Call this function with a positive and negative value to test that it works, using cout to display
the result.

1

2. Write another function that continuously asks for numbers (use cin), until the user provides a
negative number. You’ll need some kind of loop and you should make use of the function you
created in Exercise 1.

3. Recursion is an alternative to writing loops where a function “calls itself”. Write another version
of the factorial function that uses Recursion instead of loops. What is one advantage and one
disadvantage of using Recursion as an alternative to loops?

Lesson 4 - Pointers

1. Given that a pointer holds the value of a memory address, why is it permitted to add an integer
data type value to a pointer variable but not a double data type?

2. Suppose we have a pointer to float data type which contains the memory address value 100.
If we add the integer value 3 to this pointer, what will be the value of the pointer if float data
types are 4 bytes in length?

3. Write a function called swap that takes two pointers to integer arguments and returns void.
Inside the function, swap the values of the integers. Write a main function that calls this
function and verify that the value of the integers has indeed been swapped after this function
call.

4. Pointer arithmetic can be used to access specific values when a sequence of such values exist.
Create an array of 10 integers numbered 1 to 10 with the syntax:
int arr[10] = {1,2,3,4,5,6,7,8,9,10};
Now create a function which accepts a integer pointer as its argument and returns void. Imple-
ment the function to print out the even numbers of the array using pointer arithmetic.

Lesson 5 - Memory

1. What is “Stack Overflow” and why might a Recursive method be susceptible to this kind of
problem?

2. Memory Leaks are a problem associated with which type of memory? What must you do to try
and avoid causing Memory Leaks in your programs?

3. Amend the code to create a char variable on the stack and a string variable on the heap.

4. Examine some of the other options provided when calling new and delete. Amend the code to
create an array of 10 integers on the heap. Ensure that you release the memory you created
using the correct form of delete.

5. Tree structures are a widely used data construct in programming (including games program-
ming). One such tree structure is a Binary Search Tree which stores data in a manner that
allows fast searching. Familiarise yourself with this technique and write your own Binary Search
Tree using the code below to help you:

1 struct node {

2 int value;

3 struct node* left;

4 struct node* right;

5 };

6

7 struct node* root = NULL;

8

9 // implement the functions described by these headers

10 void insert_integer(struct node** tree , int value);

11 void print_tree(struct node* tree);

12 void terminate_tree(struct node* tree);

13

2

14 /**

15 * Main function

16 */

17 int main() {

18 // call your implemented functions here to test

19 // the binary search tree

20 return 0;

21 }

memory.cpp

A Tree can be considered as a collection of nodes, linked to one another via pointers. You have
been given the definition of a node in the Binary Search Tree. This is in the form of a struct;
a record for holding together related variables.

You “build” the tree recursively using the insert integer function. You will need to find the
correct place to insert a node to hold the new value, then create a node on the heap.

The print tree function should print out the values in the tree in ascending order, and the
terminate tree function should reclaim all the memory used in the tree.

Lesson 6 - Scope and Extent

1. When are global variables created and destroyed? How does this differ to variables created in a
function?

2. What is the scope of x in the following lines of code...

1 int y = 2;

2 for(int x = 0; x < y; ++x) {

3 cout << arr[x] << ", ";

4 }

scope extent.cpp

3. Amend the code to create two integer variables in the main function with the same name, use
what you’ve learned about scope and extent to prevent a naming conflict.

4. Alter the program such that the some function function belongs to a newly created namespace
called some namespace. Now create another some function function as a duplicate of the
original, within another namespace called some other namespace. Finally, call both functions
within the main function using the namespace syntax (i.e. namespace::function).

Lesson 7 - References

1. What is wrong with these lines of code...

1 int& empty_reference;

2 int& unnamed_reference = 5;

references.cpp

2. what is the value of x ref after these lines of code execute...

3 int x = 3, y = 4;

4 int& x_ref = x;

5 x_ref = y;

references.cpp

3. Why should you never return a reference type from a function, if the return value is “local
variable” of that function?

3

4. Create another function called swap which swaps two characters and returns void. Ensure that
your function swaps the original variables and does not create copies. Call this function from
the main function to make sure it works.

5. Create a global variable in the form of an array of 10 integers, i.e:
int nums[10] = {7,3,5,2,1,4,6,9,10,8};
and create a new function which sorts the numbers of the array into ascending order; use the
swap ref function to help you.

Lesson 8 - Arrays

1. Amend the code to create an array of characters on the stack, which contains your full name
(including room for a space between your first and last names). Now create a function which
prints to screen your name using the array you just created.

2. Create two arrays on the heap called “first” and “last”. Copy your first name into the “first”
array and your last name into the “last” array.

3. Create a “battleship” game using a 2-dimension array of booleans to represent the battle-ground.
Use appropriate dimensions (say 5 by 5) and denote the presence of your “battleship” by setting
the boolean values to true in array indices where your battleship is situated. Provide the user
with a certain number of guesses to pick coordinates within the 2-D array. Your program should
keep track of the number of guesses made and inform the user whether a guess is successful or
not.

Lesson 9 - Classes

1. Modify the “Enemy” constructor so that the score field is set to an inital supplied value like
hit points.

2. Create a new class called “player” which possesses the same fields and methods as enemy. In
addtion, give the player a string field called “name”, use the std::string class. Create “name”
on the heap and provide methods to “get” and “set” the name of player.

3. Re-write the Binary Search Tree code from Lesson 5 to create a Binary Search Tree class.
Implement a Constructor, Destructor in addition to methods which allow an integer to be
inserted and the tree to be printed to screen. Implement a search method which returns true if
a supplied value is present in the tree, false otherwise.

4. Modify the “battleship” game in the previous exercise to use classes. Create a battleship class
which possess a “hit-points” and “score” field. When the user lands a shot, the score field should
be increased until hit-points is reached. This should denote that your battleship has been sunk.
How you represent the battleground is your choice.

Lesson 10 - Inheritance

1. If we did not make the “Enemy” Class Destructor virtual, how might a memory leak be
introduced into our program when the “ArmedEnemy” class Destructor is called?

2. How does giving a class one or more virtual methods, affect the memory requirements for the
C++ compiler compared to a class which possesses no virtual methods?

3. Create a “Boss” class which inherits from the “Armed Enemy” class. Implement an additional
armour level field for the “Boss” class and provide suitable getter and setter methods. Create a
“Boss” Object in the main function to test the functionality of your “Boss” class.

4. By taking advantage of “inheritance” and “polymorphism” we can group together objects of
different classes and perform common operations on them. Make the “Enemy” class abstract.
Create an array of 10 “ArmedEnemy” objects and a “Boss” object. With the help of “polymor-
phism”, create a single array of references to the “ArmedEnemy” and “Boss” objects. Iterate

4

through the array decrementing the hit point value of each reference; use a single function for
decrementing which accepts a “Enemy” reference as its argument.

5. Create an abstract “Comparable” class. Any class which inherits from “Comparable” should
implement a compare to method which has the following header:

1 /** returns 1 if this class is greater than rhs , 0 if equal

2 * and (-1) if this class is less than rhs.

3 */

4 int compare_to(const Comparable& rhs);

inheritance.cpp

Create a new Binary Search Tree class which stores “Comparable” objects rather than integers.
Create some comparable objects and test your new Binary Search Tree class.

Lesson 11 - Templates

1. When does the Compiler usually perform compilation of a Template class?

2. Given how the compilation process is different for Templates, why might you place the Template’s
class method definitions in the header file with the class declaration?

3. Create a Matrix of characters using the template class in this lesson. Populate the matrix so it
contains the characters:
a, b, c,
d, e, f,
g, h, i
I.E. the character at index [2][2] should contain ‘e’.

4. Re-implement The Binary Search Tree class as a template type.

5. Create your own “stack” container as a template. Provide methods to push, pop, get the size
and check if the stack is empty.

Lesson 12 - Operator Overloading

1. Overload the stream operator so that “ArmedEnemy” class can be printed to screen using cout,
like the Matrix class; hint: use a friend function.

2. Provide implementations of “addition”, “subtraction” and “equals” for the Matrix class.

3. Create a “Complex Number” class with the appropriate methods for “addition”, “subtraction”
etc and create a Matrix of “Complex Numbers”.

Lesson 13 - Vectors (and the STL)

1. How does storage differ between a vector container and a list container? Given the way
Caches reduce costly memory access, which container do you think might sometimes be better
in terms of improving “cache hit rate”?

2. Create a vector of “ArmedEnemy” types by implementing the necessary code in “ArmedEnemy”
so that it can be used with the vector template class.

3. Explore some of the other container classes in the STL. Create a “Stack” and a “Queue” of
“ArmedEnemy” types, practise adding, removing and iterating through the elements as shown
with the vector.

4. Create a vector of 10 “ArmedEnemy” types. Give each “ArmedEnemy” class in the vector a
different value for its hit point field. Use the appropriate “Algorithms” functionality in the STL
to first randomly shuffle the “ArmedEnemy” members of the vector then sort them according
to the value in their hit point field.

5

Lesson 14 - Exception Handling

1. Explore the documentation for your compiler so that you know how to create programs which
do not use the exception handling mechanism.

2. Change the name of the file “data.txt” and run the program, notice how the program responds
as it now cannot locate the file.

3. Change the name of the file back to “data.txt”. Amend line 39 so that the second argument of
the find average function is zero. Again, note the response of the divide by zero exception.

4. Create another data file called “data2.txt”. In “data2.txt” place 6 random integers values as in
“data.txt”. Now amend the code so that it reads in both files and adds the values in “data.txt”
and “data2.txt” before computing the average.

5. Create your own exception class which is thrown in the event that the size of the scores vector
is less than 10 after the values have been read and stored in the scores vector. Amend the code
to include a test for this exception and test that it works.

Lesson 15 - Threads

1. Create a “hello world” thread which executes a loop, printing to screen the message “Hello from
Thread (handle)” 10 times. Extend the Thread class provided.

2. Create a thread-safe Binary Search Tree class which uses a single lock to ensure only one thread
at a time can insert comparable objects (this is coarse-grained locking).

3. Create a thread-safe Binary Search Tree class which uses a lock-per-node so that threads can
insert comparable objects concurrently (this is fine-grained locking).

6

